Binary Decoder Analysis of Pages 6-13 of Jim Penniston's Binary Codes by Joe R. Luciano

UPDATED 2012/2/21
All text 2012-2014 by Joseph R. Luciano
All Notebook Images 2012-2014 by James Penniston

Go To Main Menu

2012/2/21 - by Joe R. Luciano
Using Binary Decoder v3.1

Introduction

Analysis of 8 Pages (Pages #6-13) of Binary Codes written down by former USAF S/Sgt. James Penniston on what he thinks was the morning of December 27, 1980 from scans of original notebook pages.

For these pages, I have listed the ORIGINAL binary codes as they were displayed on the photo images of the original 8 pages. As best as possible, the spaces between groups of binary digits were preserved as written on the original pages.

The ARRANGED codes were modified ONLY by adding/removing spaces and moving bits from one line to the next to make obvious groups of 8. The Binary Decoder TOTALLY ignores spaces. So, they have no effect whatsoever in the decoding process.

When feeding the ARRANGED binary code into the Binary Decoder:

NO bits were moved out of relative position within the overall stream of bits.
NO bits were added or removed from the original source codes.
NO bits were modified from 0 to 1 or 1 to 0.

ONLY after seeing the results of the decoding from 8-bit binary ASCII into characters did I determine to add, remove or change bits where the resulting characters did not make any sense due to transmission errors of the binary bits. All such corrections are fully documented in my notes alongside the code.

I have presented the precise decoding (without any bit modification) of the original binary code into 8-bit ASCII characters as produced by the Binary Decoder, and then shown my interpretation after the inserting, removing or changing of bits to compensate for "transmission errors", and thus make the characters contextually relevant.

NOTE: Scroll all the way to the bottom to see the composite of the decoded Pages 6-13.


Page 06 - ORIGINAL CODE:
001100 1 00110110 0011
0111 00110110 00110011
0011000 1 00 11 01
1100110111 0100
111000111000001
1100 1 00110001
00110001 00110
1110011011100 11
0 110 0 0 1 1 1
000 01010111
0011001100 1 1
0100 00111000
001 1000000
11000000110010

Page 07 - ORIGINAL CODE:
001101110110010
0100111000110001
00110001 00110001
00111 00000
110100 00 11 00
1101101010011
01100011011 1
0101011100110
0 10 00111001
00111001 001
10 1 11

Page 08 - ORIGINAL CODE:
0011011100111000
00 11 0011 001 1
0 1 10 0 100
1110 00110011
0011000 1 0011
0001 00110011
0011 0001 0011
0110 00110100
00111 00101000
101

Page 09 - ORIGINAL CODE:
0011000100110100
001101110011000000
11000 10011010100
110000 00110101
010100 1100110111
00110101001100010
0 110110011011100
1100000110 10 00
0 1 1 00 1 1
010101 1100110011
0011 0 110 00

Page 10 - ORIGINAL CODE:
11001000110101
001101100011
10000011
0100 00 11
0 1 0 1 01
001110
001100
01 001 1
0 001

Page 11 - ORIGINAL CODE:
0 0110
111 0011 0001
0011000000
11 0000 0011
01 10 0011
0011 0011
0010 010001010
0110011

Page 12 - ORIGINAL CODE:
001101110011000
1001100010011
000000110001
00111001001
101010100111
0 0011 0010
00110101
00110011001
10 1 11 0011
0010

Page 13 - ORIGINAL CODE:
0011001000111000
0011 000101000
10 1


Pages #6-13 - ARRANGED Code:
0011001
00110110 00110111 00110110 00110011 00110001 00110111 00110111 01001110
00111000 00111001 00110001 00110001 00110111 00110111 00110110 00111000 01010111
00110011 00110100 00111000 00110000 00110000 00110010 00110111
0110010

01001110
00110001 00110001 00110001 00111000 00110100 00110011
0110101
00110110 00110111 01010111

00110010 00111001 00111001 00110111 00110111 00111000 00110011 00110110 01001110
00110011 00110001 00110001 00110011 00110001 00110110 00110100 00111001 01000101
00110001 00110100 00110111 00110000 00110001 00110101 00110000 00110101 01010011

00110111 00110101 00110001 00110110
0110111
0011000

00110100 00110011 01010111
00110011 00110110 00110010 00110101 00110110 00111000 00110100 00110101 01001110
00110001
00110001 00110111 00110001 00110000 00110000 00110110 00110011 00110010 01000101
00110011 00110111 00110001 00110001 00110000 00110001 00111001 00110101 01001110
00110010 00110101 00110011 00110111 00110010 00110010 00111000 00110001 01000101


Pages #6-13 - Results from Binary Decoder v3.1
0011001        <-- Missing 0 ? Would be: 00110001
[exs]        <--             Would be:        1
          
00110110 00110111 00110110 00110011 00110001 00110111 00110111 01001110  
6 7 6 3 1 7 7 N  
          
00111000 00111001 00110001 00110001 00110111 00110111 00110110 00111000 01010111 
8 9 1 1 7 7 6 8 W 
          
00110011 00110100 00111000 00110000 00110000 00110010 00110111   
3 4 8 0 0 2 7   
          
0110010        <-- Missing 0 at begin? Would be: 00110010
[exs]        <--                     Would be:        2
          
01001110         
N         
          
00110001 00110001 00110001 00111000 00110100 00110011    
1 1 1 8 4 3    
          
0110101        <-- Missing 0 at begin? Would be: 00110101
[exs]        <--                     Would be:        5
          
00110110 00110111 01010111       
6 7 W       
          
00110010 00111001 00111001 00110111 00110111 00111000 00110011 00110110 01001110 
2 9 9 7 7 8 3 6 N 
          
00110011 00110001 00110001 00110011 00110001 00110110 00110100 00111001 01000101 
3 1 1 3 1 6 4 9 E 
          
00110001 00110100 00110111 00110000 00110001 00110101 00110000 00110101 01010011 
1 4 7 0 1 5 0 5 S 
          
00110111 00110101 00110001 00110110      
7 5 1 6      
          
0110111        <-- Missing 0 at begin? Would be: 00110111
[exs]        <--                     Would be:        7
          
0011000        <-- Missing 0 at end? Would be: 00110000
[exs]        <--                   Would be:        0
          
00110100 00110011 01010111       
4 3 W       
          
00110011 00110110 00110010 00110101 00110110 00111000 00110100 00110101 01001110 
3 6 2 5 6 8 4 5 N 
          
00110001         
1         
          
00110001 00110111 00110001 00110000 00110000 00110110 00110011 00110010 01000101 
1 7 1 0 0 6 3 2 E 
          
00110011 00110111 00110001 00110001 00110000 00110001 00111001 00110101 01001110 
3 7 1 1 0 1 9 5 N 
          
00110010 00110101 00110011 00110111 00110010 00110010 00111000 00110001 01000101 
2 5 3 7 2 2 8 1 E 


Total Source Bit Count = 875
Should Form 109 bytes with 3 excess bits
Results = 105 bytes with 35 excess bits in 5 groups

Pages 6-13 - Full Text Message:
?6763177N89117768W3480027?N111843?67W29977836N31131649E14701505S7516??43W36256845N117100632E37110195N25372281E

Pages 6-13 - Full Message Separated by Coordinate Pairs and Appropriate Spaces:
?6763177N 89117768W   <-- ? represents undecipherable character due to transmission error
3480027?N 111843?67W   <-- ?'s represent undecipherable characters due to transmission error
29977836N 31131649E
14701505S 7516??43W
   <-- ?'s represent undecipherable characters due to transmission error
36256845N 117100632E
37110195N 25372281E

My interpretation with apparent transmission error "dropped bits" added into original binary:
(See notes above in results of Binary Decoder)

16763177N 89117768W    (1st latitude digit ("1") has dropped 0 bit added back in)
34800272N 111843567W   (last latitude digit ("2") and 7th longitude digit ("5") have dropped 0 bits added back in)
29977836N 31131649E
14701505S 75167043W
    (5th and 6th longitude digits ("70") have dropped 0 bits added back in)
36256845N 117100632E
37110195N 25372281E

NOTE: By re-inserting the appropriate "dropped 0 bits" caused by transmission error, I have resolved ALL the "excess bits" anomalies in the original binary code, resulting in logically and mathematically correct 8-bit binary ASCII. This has also translated to a mathematically consistent set of latitude/longitude geographic coordinates.





Go To Main Menu


Home Page

Complete Decoded and Interpreted Message

Interpreted Geographic Coordinate Set

Google Maps and Information on Each Coordinate


Analysis of Geographic Coordinates


Binary Decoder Analysis of Pages 1-5

Binary Decoder Analysis of Pages 6-13 (This Page)

Binary Decoder Analysis of Pages 14-16


Full 16-pages of Transcribed Binary Code


RFI Notebook Original Pages


Binary Decoder Program



All text 2012-2014 by Joseph R. Luciano
All Notebook Images 2012-2014 by James Penniston